Assessing Changes in Quality of the Treated Wastewater by Passing through a Soil Column for Irrigation of Agricultural Crops

Document Type : Research Paper

Authors

Abstract

Reuse of treated municipal wastewater in agriculture and artificial recharge of aquifers in arid and semi-arid regions are of great interest to water resources specialists. In the use of treated wastewater for artificial recharge operations, the fate of substances added to the soil by wastewater transmission of pollutants to the aquifer depth and movement is very important, because they may cause contamination of soil and groundwater resources. In this study, an L-shaped cylindrical column, made of PVC with a diameter of 30 cm was used  to simulate the vertical movement of water and its movement in the shallow groundwater layer during artificial recharge operations. Horizontal sections along the vertical length were 300 cm and 250 cm. The column was filled with a sandy loam soil and the treated wastewater of Mahdasht treatment plant located in Alborz Province was used for artificial recharge operations. During the test period, the effect of management strategy of permanent water logging for 40 days and a dry period for the removal of wastewater pollutants in the soil column were examined. Values ​of BOD5, COD, EC, coliform, fecal coliform, phosphorus and nitrate in water samples collected from the inlet and the path length were measured at one meter intervals. The results indicated the high efficiency of removing pollutants in the soil column, while the nitrate removal efficiency and EC changes were low. The values ​of BOD5, COD, EC, coliform, fecal coliform, phosphorus and nitrate in the best of cases were 96.4%, 91.8%, 15.4%, 99.3%, 99.4%, 92.4% and 17.2%, respectively. A comparison with National Guides of Iranian Environmental Protection Agency shows that the outflow of artificial recharge system can be used for irrigation of agricultural crops. However, it is to be noted that, generally, use of wastewater for irrigation of food crops is not recommended.

Keywords


  1. توکلی م. و طباطبایی م. 1378. آبیاری با فاضلاب تصفیه شده. مجموعه مقالات همایش جنبه­های زیست محیطی استفاده از پساب­ها در آبیاری. وزارت نیرو، کمیته ملی آبیاری و زهکشی ایران.11آذرماه 1378، تهران. صفحات:35-52.
  2. حسن­اقلی ع. 1381 . استفاده از فاضلاب های خانگی و پساب تصفیه­خانه­ها در آبیاری محصولات کشاورزی و تغذیه مصنوعی سفره های آب زیرزمینی. رساله دکتری، دانشگاه تهران.
  3. حسین­پور ا. حق نیا غ. علیزاده ا. و فتوت ا. 1387. بررسی انتقال برخی عناصر به عمق خاک پس از آبیاری با فاضلاب خام و پساب شهری در دو شرایط غرقاب پیوسته. نشریه آب و خاک 132:22-117.
  4. حسین­پور ا. حق نیا غ. علیزاده ا. و فتوت ا. 1387. بررسی تغییرات کیفیت شیمیایی فاضلاب خام و پساب شهری در اثر عبور از ستونهای خاک. نشریه آب و خاک 56:23-45.
  5. موسوی، س. ف. 1376. مطالعه آلودگی آب­های زیرزمینی حاشیه رودخانه زاینده­رود. مجله آب و فاضلاب،24: 9-21.

 

  1. Anon. 1995. Standard methods for the examination of water and wastewater, 19th edition, American Public Health Association (APHA), U.S.A.
  2. Asano, T. and Cotruvo, J.A. 2004. Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Research 38 (8): 1941-1951.
  3. Bouwer, A.N., Hamdi, M.R. and Tarawneh, Z. 2009. Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the Mediterranean region. Desalination 237 (1-3): 162-174.
  4. Bekele, E., Toze, S., Patterson, B. and Higginson, S. 2011. Managed aquifer recharge of treated wastewater: Water quality changes resulting from infiltration through the vadose zone. Water Research 45 (11): 5764-5772.
  5. Cha, W., Kim, J. and Choi, H. 2006. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Research, 40 (5): 1034-1042.
  6. Dillon, P., Pavelic, P., Toze, S., Rinck-Pfeiffer, S., Martin, R., Knapton, A. and Pidsley, D., 2006. Role of aquifer storage in water reuse. Desalination 188 (1-3): 123-134.
  7. Essandoh, H.M.K., Tizaoui, C., Mohamed, M.H.A., Amy, G. and Brdjanovic D. 2011. Soil aquifer treatment of artificial wastewater under saturated conditions. Water Research, 45 ( 11): 4211-4226.
  8. FAO. 1999. Wastewater treatment and use in agriculture. Food and Agriculture Organization of the United Nations, Rome, FAO 47.
  9. Fox, P., Houston, S., Westerhoff, P., Nellor, M., Yanko, W., Baird, R., Rincon, M., Gully, J., Carr, S., Arnold, R., Lancey, K.,Quanrud, D., Ela, W., Amy, G., Reinhard, M. and Drewes, J.E., 2006. Advances in soil aquifer treatment research for sustainable water reuse. AWWA Research foundation and American Water Works Association, Denver, CO.
  10. Gohil, M.B. 2000. Land treatment of wastewater. New Age International Ltd., Publishers, New Delhi.
  11. Gordon, C., Wall, K., Toze, S. and O’Hara, G. 2002. Influence of conditions on the survival of enteric viruses and Indicator organisms in groundwater. In: Paper Presented at Proceedings of the 4th international symposium on artificial recharge of groundwater Isar-4-management of aquifer recharge for sustainability. Balkema publishers, Adelaide SA.
  12. Haruvy, N. 1998. Wastewater reuse-regional and economic considerations. Resource, Conservation and Recycling, 23: 57-66.
  13. Kanarek A., Arohi A. and Michail M. 1993. Municipal wastewater reuse via soil aquifer treatment for nonpotable purposes. Water Science. Technol. 27: 53–61.
  14. Lance J. C., Rice R. C. and Gilbert R. G. 1980. Renovation of wastewater by soil columns flooded with primary effluent. Journal of  Water Pollutant. Control Fed. 52(2) ,381–387.
  15. McLaren R.G., Clucas L.M., Taylor M.D., and Hendry T. 2003. Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. Leaching of macronutrients. Australian Journal of Soil Research 41:571-588.
  16. Tchobanoglous G., Burton, F.L. and Stensel, H.D., 2003. Wastewater engineering: Treatment and reuse, further. McGraw-Hill Inc., New York.
  17. Pescod, M.B., 1992. Wastewater treatment and use in agriculture. FAO Irrigation and drainage paper, 47 ed., Vol. 47. Food and Agriculture Organization of the United Nations, Rome.
  18. Rice R. C. and Bouwer H. 1984. Soil-aquifer treatment using primary effluent. Journal of Water Pollutant. Control Fed. 56: 84–88.
  19. Toze, S., Bekele, E., Page, D., Sidhu, J. and Shackleton, M. 2010. Use of static quantitative microbial risk assessment to determine pathogen risks in an unconfined carbonate aquifer used for managed aquifer recharge. Water Research, 44 (4): 1038-1049.
  20. Toze, S. and Hanna, J., 2002. The survival potential of enteric pathogens in a reclaimed water ASR project. In: paper presented at Proceedings of the 4th International Symposium on Artificial Recharge of Groundwater ISAR-4-management of aquifer recharge for sustainability. Balkema publishers, Adelaide, SA, pp. 139-142.
  21. Von Wandruszka, R. 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions, 7 (6). doi:10.1186/1467- 4866-7-6.
  22. Whelan, B.R. 1988. Disposal of  septic tank effluent in calcareous sand. Journal of Environmental Quality, 17 (2): 272-277.
  23. Zhao, Q. L., Wang, L. N. Xue, S. Liu, Z. G. You S. J. and Wang. S. H. 2007. Migration and removal of organic matters in reclaimed wastewater during groundwater recharge. Applied Ecology, 18 (7): 1661-1664.