Determation of moisture distribution pattern is time-consuming and a costly field tests. Simulation models are a suitable alternative in answer to issues of water movement and distribution. In this research, soil moisture under drip irrigation was simulated with SWAP model and the model efficiency was evaluated by comparing the simulated results with field results. SWAP model was evaluated based on the information gathered from a research field of Water Sciences Faculty, Shahid Chamran University of Ahvaz under corn cultivation and equipped with drip irrigation system. The hydraulic parameters were obtained from RETC model in the growing season of 2012-13. Required data were collected by field experiments. The experiments consisted of two treatments of salinity including treatments T1 (Karun River water with salinity of 3dS/m) and treatments T2 with salinity of 3.5 dS/m. Planting was done by hand in plots including four rows of 3 m with row spacing of 75 cm and with a plant density of 80,000 plants/ha. Irrigation system was drip tape with emitter holes spacing of 20 cm and discharge of 2.2 lit/h at a pressure 0.6 bar. Comparison of the measured soil moisture with simulated soil moisture to a depth of 90 cm depth was performed on the ridge and 10 and 20 cm from emitter by drawing graphs and calculation of Maximum Error (ME), Normalized Root Mean Square Error (NRMSE) and Coefficient of Residual Mass (CRM). Computed values of ME, NRMSE and CRM in different locations were as follows: 10 cm from emitter: 0.02, 14.41 and -0.0016 cm3 cm-3; 20 cm from emitter: 0.07, 15.49 and -0.036 cm3 cm-3, and on the ridge: 2.1, 12.52 and -0.036 cm3 cm-3. SWAP model accuracy in estimating changes in moisture away from the emitter decreased with increasing distance from the emitter. This may be due to low precision of the model under high salinities. Generally, the results obtained from stimulating by SWAP showed that this model could stimulate moisture distribution in soil under drip irrigation with salty water. This model can be used as a useful tool for evaluation of moisture distribution around the a dripper.
اژدری خ، 1387. شبیهسازی توزیع رطوبت در خاک در سیستم آبیاری قطرهای با استفاده از مدل HYDRUS-2D. مجله علوم کشاورزی ومنابع طبیعی، جلد 15، شماره 1، صفحههای 168 تا 180.
اژدری خ و زارع ابیانه ح، 1388. مطالعه تغییرات کود نیتروژن و رطوبت در مزرعهای مجهز به سیستم کود آبیاری قطرهای. صفحههای 214 تا 221. مجموعه مقالات اولین کنفرانس بین المللی منابع آب. 27-25 آبان ماه، دانشگاه صنعتی شاهرود.
خیامم س و گوهری چ، 1383. مدلسازی رشد چغندرقند: اهداف و نیازها. مجله اقتصاد کشاورزی و توسعه، جلد10، شماره48، صفحههای 93 تا 95.
زارع ابیانه ح، فرخی ا، وظیفه دوست م و اژدری خ، 1389. برآورد الگوی توزیع رطوبت خاک تحت آبیاری قطرهای درمزرعه پیاز. نشریه آب وخاک، جلد24، شماره6، صفحههای1197 تا 1209.
سلطانی محمدی ا م،1390. تأثیر تنش رطوبتی و تنش شوری در مراحل مختلف رشد. رساله دکتری آبیاری وزهکشی، دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز.
شهیدی ع، 1387. اثر برهم کنش کمآبیاری و شوری بر عملکرد و اجزای عملکرد ارقام گندم با تعیین تابع تولید آب- شوری در منطقه بیرجند. رساله دکتری آبیاری و زهکشی، دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز.
کیانی ع ر، 1386. استفاده از مدل SWAP در شبیهسازی انتقال آب املاح و عملکرد نسبی گندم. مجموعه مقالات نهمین سمینار سراسری آبیاری و کاهش تبخیر. 18-16 بهمن ماه، دانشگاه شهید باهنر کرمان.
Brandyle T, Szaty L, Gnatow S and Tomasz O, 2005. Examination of SWAP suitability to predict soil water conditions in a field Peat-Moorsh soil. Department of environmental improvement. Warsaw Agricultural University. Poland.
Breseler, E., 1975. Two-dimensional transport of solute during non steady infiltration for a trickle source. Soil Sci. Soc. Am. Proc. 39, 604-613.
Bucks DA and Myers LE, 1987. Trickle irrigation-application uniformity from simple emitter plugging. Transactions of the American Society of Agricultural Engineers 16 (6): 1108-1111.
Droogers P, 2000. Estimating actual evapotranspiration using a detailed agro hydrological model. Journal of hydrology 229: 50-58.
Eitzinger J, Trnka M, Hosch J, Zalud Z and Dubrovsky M, 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling 171(3) : 223-246.
Huygen J. Van Dam J.C. and Krose J.G .2005. Introduction to SwapGui, the Swap2.0 graphical user interface. Unpublished manual. DLO-Staring Centre and Wageningen Agricultural University. 98p. Record No: H23829.
Jiang J, Feng Sh, Huo Z, Zhao Z and Bin J, 2011. Application of the SWAP model to simulate water–salt transport under deficit irrigation with saline water. Mathematical and Computer Modelling 54: 902-911.
Loague, K. and Green, R. E. 1991. Statistical and graphical methods for evaluating solute transport models: overiew and application. J. cont. Hidrol. 7, 51-73.
Liu HF, Genard M, Guichard S and Bertin N, 2007. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany 58(13): 3567-3580.
Mualem Y, 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resourc Research 12: 513-522.
Peter JT, Ian KD, Ian MB, Craig PB, Mike AS and Brain AK, 2003. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science 22: 201-209.
Richards LA, 1931. Capillary conduction of liquids in porous mediums. Physics 1: 318-333.
Singh UK, Ren L and Kang S, 2010. Simulation of soil water in space and time using an agrohydrological model and remote sensing techniques. Agricultural Water Management 97(8): 1210-1220.
Utset A, Velicia H Del Rio B, Morillo R, Antonio Centeno J and Carlos Martines J, 2007. Calibration and validation agrohydrogical model to simulate sugarbeet water use under Mediterranean conditions. Agricultural Water Management94(1-3): 11-21.
Van Genuchten M Th, 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898.
Van Genuchten MT, Leij FکJ and Yates SR, 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils. Office of research and developement U.S. environmental protection agency ADA. Oklahoma.
Vazifedoust M,Van Dam JC Feddes RA and Feizi M ,2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management 95:89-102.
t, M., b, S., s, A., & n, A. (2016). Simulation of Moisture Distribution in Soil under Drip Irrigation with Saline Water Using SWAP Model. Journal of Water Research in Agriculture, 30(2), 201-213. doi: 10.22092/jwra.2016.106644
MLA
m t; s b; a s; a n. "Simulation of Moisture Distribution in Soil under Drip Irrigation with Saline Water Using SWAP Model". Journal of Water Research in Agriculture, 30, 2, 2016, 201-213. doi: 10.22092/jwra.2016.106644
HARVARD
t, M., b, S., s, A., n, A. (2016). 'Simulation of Moisture Distribution in Soil under Drip Irrigation with Saline Water Using SWAP Model', Journal of Water Research in Agriculture, 30(2), pp. 201-213. doi: 10.22092/jwra.2016.106644
VANCOUVER
t, M., b, S., s, A., n, A. Simulation of Moisture Distribution in Soil under Drip Irrigation with Saline Water Using SWAP Model. Journal of Water Research in Agriculture, 2016; 30(2): 201-213. doi: 10.22092/jwra.2016.106644