Drip irrigation has a priority in selecting an appropriate irrigation method in arid and semi-arid regions because of its potential of precisely applying water and chemicals both in quantity and position. Proper design and management of a drip fertigation system is, to some extent, dependent upon a better understanding of wetting patterns and water and solute distributions in soil under different combinations of soil type and layering, emitter application rate, volume applied and fertigation concentration. In this study, experiments were carried out in a transparent plexiglass tank (0.5 x1.22 x 3 m) using three different soil textures (light, heavy, and medium). The emitter outflows were considered 2.4, 4, and 6 lit/hr with irrigation duration of 6 hr. The fertigation treatments included treatments with nitrate concentrations of 125, 250, and 375 mg/L. Urea fertilizer (CH4N2O) (46% nitrogen) was used in the fertigation treatments. Then, using the p theorem of Buckingham and Dimension Analysis (DA), equations were developed to estimate the pattern of nitrate distribution pattern (horizontal and vertical) in the three soil textures. The equations developed were functions of initial soil nitrate content, nitrate concentrations in fertigation, initial moisture, radial distance of points, applied water volume, hydraulic conductivity, and emitter outflows. The results of the comparisons between simulated and observed values showed that the equations were capable of predicting the pattern of moisture distribution in different directions. The averages of Root Mean Square Error (RMSE) values in clay soil and for emitter outflows 2.4, 4, and 6 lit/hr were 0.025, 0.105 and 0.093, respectively. These values for loamy soil were 0.032, 0.052, and 0.05, respectively, and for sandy soil were 0.023, 0.038, and 0.035, respectively. Considering these equations in designing surface drip irrigation systems could improve system performance.
بشارت، س. 1388. بررسی انتقال آب در خاک با جذب آن توسط گیاه بر اساس مطالعات میدانی و حل معادلات حاکم. پایان نامه دکتری آبیاری و زهکشی. دانشگاه تبریز.
کریمی،ب.، سهرابی، ت.، میرزایی، ف.، آبابایی، ب.(a)1394. استخراج روابط تخمین سرعت پیشروی جبهه حرکت آب در سیستم آبیاری قطرهای سطحی و زیر سطحی با کمک آنالیز ابعادی. مجله دانش آب و خاک. جلد 25، شماره 1، صفحه 101-112.
کریمی،ب.، سهرابی، ت.، میرزایی، ف.، آبابایی، ب. (b)1394. بررسی توزیع رطوبت- نیترات و عمق نصب لاترالها در آبیاری قطرهای سطحی و زیر سطحی. مجله پژوهش آب ایران، جلد 9، شماره 3، صفحه 81-94.
کریمی،ب.، سهرابی، ت.، میرزایی، ف.، آبابایی، ب. 1393. ارایه روابطی برای پیشبینی الگوی توزیع مجدد رطوبت خاک در سیستم آبیاری قطرهای سطحی و زیرسطحی به روش آنالیز ابعادی. مجله پژوهشهای حفاظت آب و خاک، جلد 21، شماره 6، صفحه 223-237.
کریمی،ب.، میرزایی، ف.، سهرابی، ت. (c)1394. بسط معادلاتی برای برآورد الگوی سطح خیس شده در سامانههای آبیاری قطرهای سطحی و زیر سطحی به روش تحلیل ابعادی. مجله دانش آب و خاک. جلد 25، شماره 3، صفحه 241-252.
Bresler, E. 1978.Analysis of trickle irrigation with application to design problems.Irrig.Sci. 1: 13- 17.
Blaine R. H, Jirka Simunek, Jan W. Hopmans.2006. Evaluation of urea–ammonium–nitrate fertigation with drip irrigatio using numerical modeling. Agricultural water management Vol: 86, pp: 102 – 113.
Bufon, V.B. 2010. Optimizing Subsurface Drip Irrigation Design and Management with Hydrus-2D/3D Model. Ph.D thesis in Texas Tech University.
Cook, F.J., Thorburn, P.J., Fitch, P., Charlesworth, PB., and Bristow, K.L .2006. Modelling trickle irrigation: comparison of analytical and numerical models for estimation of wetting front position with time. Environ Model Softw 21:1353–1359.
Cote, C. M., Bristow K. L., Charlesworth, P. B., Cook, F. J., and Thorburn, P. J. 2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrig. Sci. 22: 143-156.
Dirksen, C. 1978. Transient and steady flow from subsurface line sources at constant hydraulic head in anisotropic soil. Trans. ASAE 21(5): 913- 919.
Gilley, J. R. and Allred, E. R. 1974. Infiltration and root extraction from subsurface irrigation laterals. Trans. ASAE. 17 (5): 927- 933.
Kandelous, M.M., and Simunek, J. 2010(a). Comparison of numerical, analytical and empirical models to estimate wetting pattern for surface and subsurface drip irrigation.Irrig. Sci. 28: 435-444.
Kandelous, M.M., and Simunek, J. 2010(b). Numerical simulations of water movement in a subsurface drip irrigation systemunder field and laboratory conditions using HYDRUS-2D. Agri. Water mang. 97: 1070-1076.
Lamm, F.R., Ayars, J.E., and Nakayama, F.S. 2007. Micro Irrigation for Crop Production (Design, Operation and Management). Elsevier book.
Lazarovitch, N., Warrick, A.W., Furman, A., and Simunek, J. 2007. Subsurface water distribution from drip irrigation described by moment analyses.Vadose Zone J. 6:116–123.
Li, J., Zhang, J., and Rao, M. 2004. Wetting Pattern and Nitrogen Distribution as Affected by Fertilization Strategies from a Surface Point Source.Agri. Water mang. 67: 89-104.
Li Jiu-sheng, Ji Hong-yan, Li Bei and Liu Y. 2007 .Wetting patterns and nitrate distributions in layered-textural soils under drip irrigation. Agricultural Sciences in China. 6 :( 8). Pp: 970-980.
Meshkat, M., Warner, R.C., and Workman, S.R. 1999.Modeling of Evaporation Reduction in Drip Irrigation. J. Irrig. Drain. Eng. 125 (6): 315- 323.
Mirzaei, F., Liaghat, A.M., Sohrabi, T.M., and Omid, M. 2005.Simulation of the wetting front from a linear source in tape irrigation systems.Journal of Agricultural Enginering Researchs. 6(23):53-66.
Philip, J. R. 1991. Effects of root and subirrigation depth on evaporation and percolation losses. Soil Sci. Soc. Am. J. 55: 1520- 1523.
Siyal A.A., Skaggs T.H. 2009 .Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. Agricultural water management Vol: 96, pp: 893 – 904.
Singh, D.K., Rajput, T.B.S., Singh, D.K., Sikarwar, H.S., Sahoo, R.N., and Ahmad, T. 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Journal of Agricultural Water Management . 83: 130- 134.
Thorburn, P. J., Cook, F. J., and Bristow, K. L. 2003. Soil- dependant wetting from trickle emitters: Implications for system design and management. Irrig. Sci. 22: 121-127.
k, B., m, F., & s, T. (2016). Simulation of Nitrate Distribution Pattern in Surface Drip Irrigation Systems Using Dimensional Analysis. Journal of Water Research in Agriculture, 30(1), 119-130. doi: 10.22092/jwra.2016.106206
MLA
b k; f m; t s. "Simulation of Nitrate Distribution Pattern in Surface Drip Irrigation Systems Using Dimensional Analysis". Journal of Water Research in Agriculture, 30, 1, 2016, 119-130. doi: 10.22092/jwra.2016.106206
HARVARD
k, B., m, F., s, T. (2016). 'Simulation of Nitrate Distribution Pattern in Surface Drip Irrigation Systems Using Dimensional Analysis', Journal of Water Research in Agriculture, 30(1), pp. 119-130. doi: 10.22092/jwra.2016.106206
VANCOUVER
k, B., m, F., s, T. Simulation of Nitrate Distribution Pattern in Surface Drip Irrigation Systems Using Dimensional Analysis. Journal of Water Research in Agriculture, 2016; 30(1): 119-130. doi: 10.22092/jwra.2016.106206