Document Type : Research Paper

10.22092/jwra.2014.100045

Abstract

Determination of crops water requirement in different environmental conditions is essential for preparation of precise and suitable irrigation scheduling. The effect of soil compaction and texture on crop coefficient and evapotranspiration of maize was investigated in this study, which was conducted as a factorial experiment with a completely randomized design in a research farm in Jey and Qahab district in Isfahan. The study included three soil texture treatments of silty clay loam, loam, and sandy loam, and three compaction treatments including natural density of field soils, compaction by dropping 2.5 kg weights 25 and 50 times (based on the standard Proctor test). In order to determine the reference evapotranspiration of maize, evaporation pan method was used, and for actual evapotranspiration, volumetric soil water balance method was adopted by using micro-lysimeters-drains (32 cm diameter and 80 cm height). The results showed that by increasing soil compaction crop evapotranspiration and crop coefficient of maize were reduced at the different growth stages. The maximum 10-day average evapotranspiration of maize was obtained at 8.76 mm/day in silty clay loam soil with natural bulk density of 1.27 g/cm3. This value was 70 percent higher than the minimum 10-day average evapotranspiration in the fifth decade of growth. Increasing the soil bulk density decreased total crop evapotranspiration 23%, 20.8%, and 12.8% in loam, silty clay loam, and sandy loam soil, respectively. The maximum and minimum impact of soil bulk density on crop coefficient of maize was observed in the middle and initial growth stages, respectively. The maximum and minimum impact of increased soil bulk density on reduction of crop coefficient of maize in the middle growth stage was 40.3% in loam soil and 20.7% in sandy loam soil for the second bulk density treatment.