Document Type : Research Paper

Authors

1 1- Researcher Assistant Professor of Agricultural Engineering Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.

2 Professor of Irrigation and Drainage Shahid Chamran University of Ahwaz,Iran.

3 Retired Professor of irrigation and drainage Shahid Chamran University of Ahwaz,Iran.

Abstract

In the new drainage conditions in the center and southwest of Khuzestan Province, by reducing the depth of drainage installation and controlled drainage, studying the dynamics of the mixing zone, understanding the specifications of this region, and its effect on the flow rate of drainage water and salinity is important. In this study, seven groups of piezometers, each consisting of 8 piezometers placed at different soil depths (0.8 to 5m) and at different distances from the drainage water collector were studied in two research farms, namely, field R9-11 Dabal Khazaei agro-industry (with an average drainage depth of 2 m and distances of 65 m) and field R8-7 in Salman Farsi agro-industry (with an average depth of 1.4 meters and 42 meters distances).Water level in piezometers, water salinity in different soil layers, and drainage water flow rate and salinity were monitored daily in three periods of heavy irrigation of sugarcane (March to October of 2013, 2014 and 2017). Results indicated that by starting a heavy irrigation, hydraulic head increased and hydraulic head variance between bottom layer (4 and 5 m) relative to the surface layers, established vertical flow and saline inflow upwards. Reducing the installation depth of drains up to 60 cm from in R9-11 compared to farm R8-7 and moving away from the collector up to 400 m in each farm, reduced the installation depth of drains up to 40 cm, and increased the hydraulic load by an average of 8-12 cm. The thickness of the mixing area was up to one meter and the reduction of the average salinity line in the mixing area was 8%. It was found that in addition to irrigation water salinity, drainage water salinity was affected by groundwater salinity and the difference in drainage depth, position of the impermeable layer, and the presence of sand lenses. By decreasing drainage depth, the drainage water discharge decreased sharply, such that the averag drainage water from each lateral in farm R9-11 was 10 mm/day, and in farm R8-7 it was 3.3 mm/day. The results showed that with increasing the thickness of the salt and fresh water mixing zone due to the optimal reduction of drainage depth, the volume of water consumed in each irrigation cycle decreased due to plant use of this zone, which can be an effective factor in conserving soil and water resources.

Keywords

Main Subjects

  1. اسدی کپورچال، ص.، پذیرا، ا. و همایی، م . 1391. مدلسازی آب آبشویی مورد نیاز برای بهسازی خاک های شور. مجله
  2. حفاظت منابع آب و خاک،2(2):84-65.
  3. بی نام، 1375.دستورالعمل لایه‌بندی خاک در مطالعات زهکشی اراضی، نشریه شماره153، سازمان برنامه و بودجه، دفتر تحقیقات و معیارهای فنی، 55 صفحه.
  4. پذیرا، ا. 1391. امکان بهسازی خاک های شور و سدیمی با استفاده از بهسازهای شیمیایی. مجله حفاظت منابع آب و خاک، 1(4):44-27.
  5. پناهی، م. 1389. بررسی تأثیر شوری آب زیرزمینی و آب آبیاری بر روی شوری آب خروجی از زهکش­های زیرزمینی. پایان نامه کارشناسی ارشد، رشته آبیاری و زهکشی، دانشکده علوم آب، دانشگاه شهید چمران اهواز ،116 صفحه.
  6. شکیبا، م.، لیاقت، ع. و میرزایی، ف. 1391. بررسی تأثیر عمق اختلاط بر کیفیت زه­آب خروجی از زهکش در اراضی با آب زیرزمینی کم عمق و شور. مجله پژوهش آب در کشاورزی، 27 (2): 279- 267.
  7. علی نژاد، ش. و کاوه، ف.1392. شبیه سازی توازن رطوبت و نمک های محلول در روش کم آبیاری برای برخی گیاهان زراعی. مجله حفاظت منابع آب و خاک، 1(3):28-13.
  8. محجوبی، آ. 1391. بررسی اثرات زهکشی کنترل شده بر روی شوری خاک، مدیریت آبیاری و عملکرد نیشکر در کشت و صنعت امام خمینی. پایان ­نامه دکترا رشته آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
  9. مختاران، ع.، ناصری، ع.ع. و کشکولی، ح.ع. 1392. تعیین ضخامت فصل مشترک آب شور- شیرین در اراضی تحت آبیاری و آب زیرزمینی شور و کم عمق. دوازدهمین کنفرانس هیدرولیک ایران، تهران: دانشگاه تهران. 8-7 آبان.
  10. نوذری، ح. 1388. مدیریت شوری و بهره­برداری از زه­آب کشاورزی با استفاده از تحلیل پویایی سیستم. پایان نامه دکتری، رشته هیدرولوژی و مدیریت منابع آب، دانشکده آب و خاک گروه مهندسی آبیاری و آبادانی، دانشگاه تهران،136 صفحه.
  11. هاشمی نژاد، ی.، غلامی، م. و سلطانی، و. 1391. بهینه سازی مصرف آب از طریق کنترل دقیق شوری خاک در شرایط ماندگار. مجله حفاظت منابع آب و خاک، 1(3):68-59.
  12. De Louw, P.G.B., Eeman, S. and Oude Essink, G.H.P. 2011. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrologe and Earth System Sciences Discussions, 8: 7657- 7707.
  13. De Louw, P.G.B., Eeman, S., Oude Essink, G.H.P., Vermue, E. and Post, V.E.A. 2013. Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field. Hydrogeology Journal: 501(2013)133-145.
  14. Eeman, S., De Louw, P.G.B. and Van Der Zee, S. E. A. T. M. 2017. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater. Hydrogeol J (2017) 25:223–241.
  15. Eeman, S., Leijnse, A., Raats, P.A.C. and Van Der Zee, S. E. A.T. M. 2011. Analysis of the thickness of a fresh water lens and of the transition zone between this lens and upwelling saline water. Advances in Water Resources, 34(2): 191-202.
  16. Ghjben, W.B. 1889. Nta in vebend met de woorgenomen putboring nabij Ames terdam- Tijdschrift van let konink lijk inst. Vagnig.
  17. Hassanizadeh, S.M. 1997. Mathematical modeling of hydro- geologic processes. Lecture notes. Utrecht University, Institute of Earth Sciences.
  18. Herzberg, A. 1901. Die wasser versorgune einiger nordseebader. Journal Gasbeleucht Wasserversorgung. 44: 815-9.
  19. Hubbert, M. K. 1940. The theory of groundwater motion: Journal of Geology. 48(8): 785-944.
  20. Maas, K. 2007. Influence of climate change and sea level rise on a Ghijben Herzberg Lens. Hydrogeology Journal: 347: 223-8.
  21. Oude Essink, G. H. P. 2001a. Salt water intrusion in a three- dimensional groundwater system in the Netherlands: A numerical study, Transport in Porous Media, 43(1): 137-158.
  22. Oude Essink, G. H. P. 2001b. Salt water intrusion in 3-d large- scale aquifers: A Dutch case, phys. Chem. earth, 24(4): 337.
  23. Oude Essink, G.H.P., Baaren, E.S. and De louw.  P. G. B. 2010. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resource research, 46:
  24. Sorey, M. L. 1998. Numerical modeling of liquid geothermal systems, U.S. Geological survey prof. pap. 16044-D, 1978.
  25. Pauw, P.S., van Baaren, E.S., Visser, M., Delouw, P.G.B. and Oude Essink, G.H.P. 2015. Increasing a freshwater lens below a creek ridge using a controlled artificial recharge and drainage system: a case study in the Netherlands. Hydrogeology Journal: DOI 10.1007/s10040-015-1264-z.
  26. Vermue, E., Delouw, P.G.B., Eeman, S., Oude Essink, G.H.P. and Vanderzee. S.E.T. 2010. Experimental evidence of rainwater lens dynamics in natural and agro-ecosystems in the Scheldt river region. Salt water Intrusion Meeting Azores, Portugal.