کاربرد روش سطح پاسخ در بهینه‌یابی نسبت اختلاط خاک با خاک‌اره در تیمارهای رطوبتی مختلف خاک در کشت خیار گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار دانشکده کشاورزی و منابع طبیعی مغان- دانشگاه محقق اردبیلی

چکیده

 
خیار (Cucumis sativus L) یکی از مهم‌ترین تولیدات گلخانه‌ای در ایران و جهان محسوب می‌شود. خیار محصول فصل گرم معتدل بوده و به تغییرات رطوبت خاک بسیار حساس است. به­منظور مدل‌سازی تأثیر اختلاط خاک با خاک‌اره بر عملکرد خیار گلخانه‌ای در شرایط تیمارهای رطوبتی، آزمایشی در قالب طرح بلوک‌های کاملاً تصادفی با سه تکرار انجام شد. تیمارها شامل نمونه بدون خاک اره (شاهد) و ترکیب 5%، 10%، 20% و 40% خاک اره بود و رژیم‌های رطوبتی در دو سطح 45% و 65% ظرفیت زراعی و سطح بدون تنش منظور گردید. با استفاده از روش سطح پاسخ، نتایج نشان داد که بهترین مدل عملکرد بر‌اساس متغیر‌های درصد خاک‌اره و میزان رطوبت، مدل درجه دو با ضریب تبیین 0/85 است. همچنین تأثیر میزان سطوح رطوبت در دسترس بر عملکرد به صورت خطی بوده و در مقابل تأثیر عامل درصد خاک‌اره بر عملکرد به صورت تابع درجه دو است. نیز، بیش‌ترین عملکرد با فرض کمترین رطوبت در دسترس و کمترین درصد اختلاط خاک‌اره، برابر 86/6 (تن بر هکتار) با درجه مقبولیت[1] برابر 0/6، در تیمار 13/7% خاک‌اره و 43/6% تخلیه رطوبتی به‌دست آمد. بیش‌ترین عملکرد با فرض کمترین رطوبت در دسترس و تغییر میزان خاک‌اره بین صفر تا 40%، برابر 93/6 (تن بر هکتار) با درجه مقبولیت 0/8، در تیمار 27/6% خاک‌اره و 47% تخلیه رطوبتی به‌دست آمد. نتایج نشان ‌داد که با کاهش رطوبت در دسترس و همچنین در یک رژیم رطوبتی مشخص با افزایش میزان خاک‌اره، شاخص‌های ریشه، به غیر از طول ریشه اصلی، روندی افزایشی داشت. همچنین در هر یک از تیمارهای رطوبتی، روند افزایشی عملکرد با افزایش میزان خاک‌اره مشاهده گردید. بنابراین، با توجه به تأثیر غیرخطی متغیرهای رژیم رطوبتی و میزان اختلاط خاک‌اره بر عملکرد خیار گلخانه‌ای، برای رسیدن به بهترین عملکرد، می‌بایست نسبت مناسب اختلاط آن برای هر خاک تعیین شود.
 
[1] -Desirability

کلیدواژه‌ها


عنوان مقاله [English]

Application of Response Surface Methodology in Optimizing Soil Mixing Ratio with Sawdust in Different Soil Moisture Treatments for Greenhouse Cucumber

نویسنده [English]

  • Yaser Hoseini
Associate Professor, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Cucumber is one of the important greenhouse vegetables in Iran and the world. Cucumber is a warm and temperate season crop and is very sensitive to soil moisture regimes conditions. In order to model the effect of mixing soil with sawdust on the yield of greenhouse cucumber under different moisture regimes, an experiment was conducted in a completely randomized block design with three replications. Treatments included sawdust-free treatment (control) and a combination of 5%, 10%, 20%, and 40% sawdust and amount of water were considered at two levels of 45% and 65% of field capacity and a stress-free level. Using response surface method, the results showed that, based on the variables of sawdust percentage and moisture level, the best yield model is the second degree model with a regression coefficient of 0.85. Also, the effect of available moisture levels on yield was linear and, in contrast, the effect of sawdust percentage on yield was a quadratic function. Also, assuming the least available moisture and the lowest percentage of sawdust mixing (i.e. 13.7% of sawdust and 43.6% of field capacity), the highest yield was 86.6 tons/ha with a degree of desirability of 0.6. Also, assuming the least available moisture and change of sawdust between zero to 40 % (27.6% of sawdust and 47% of field capacity), the highest yield was 93.6 tons/ha, with a degree of desirability of 0.8. The results showed that, in any specific moisture regime, with increase in the amount of sawdust, root indices, except the main root length, had an increasing trend with decrease in available water. Besides, in each of the moisture regimes treatments, an increasing trend of yield was observed with increase in the amount of sawdust. Considering the nonlinear effect of changes in moisture regime and sawdust mixing rate on greenhouse cucumber yield, in order to achieve the best yield, sawdust mixing ratio should be determined for each soil.

کلیدواژه‌ها [English]

  • Moisture regimes
  • Cucumber yield
  • Root morphological characteristics
  1. آذرمی ر، ترابی گیگلو م و حسینی ی، 1398. تأثیر پایه‌های کدو و تنش آبی بر خصوصیات رشد و عملکرد خیار گلخانه‌ای. علوم و فنون کشت‌های گلخانه‌ای, 10(1): 47-58.
  2. پاکدل پ، تهرانی‌فر ع، نعمتی س ح، لکزیان ا و خرازی س م،1390. اثر چهار نوع خاکپوش چیپس چوب، کمپوست زباله شهری، خاک اره و سنگریزه در سه ضخامت مختلف بر رشد درخت چنار، نشریه علوم باغبانی (علوم و صنایع کشاورزی)، 25 (3):296-303.
  3. قائمی م، بخش کلارستاقی ک و نبوی کلات س، 1388. مقایسه چند بستر کاشت در خواص کمی خیار گلخانه‌ای رقم نگین در روش آبکشت. یافته‌های نوین کشاورزی, 4(14): 157-166.
  4. محبتی ع ا، نجفی مود م ح، شهیدی ع، خاشعی سیوکی ع، 1397. اثر متقابل سطوح مختلف تنش خشکی و کاربرد زئولیت بر عملکرد خیار گلخانه‌ای. مجله روابط خاک و گیاه. ۹ (۲) :۵۵-۶۶
  5. همتیان دهکردی م، محمدی قهساره ا، 1390. اثر نوع بستر کشت بر عملکرد و غلظت عناصر غذایی در خیار گلخانه‌ای. دوازدهمین کنگره علوم خاک ایران. تبریز.
  6. نوابی، ف،1377، تعیین نقطه بحرانی فسفر و پتاسیم برای محصول پنبه. وزارت جهاد کشاورزی، موسسه تحقیقات خاک و آب.
  7. Ahmad MAF, Maher JT and Ibrahim M M, 2019. Evaluation of different soilless media on growth, quality, and yield of cucumber (Cucumis sativus L.) grown under greenhouse conditions. 13(08):1388-1401.
  8. Al-Debei HS, Makhadmeh I, Abu-Al Ruz I, Al-Abdallat AM, Ayad JY and Al Amin N,  Influence of different rootstocks on growth and yield of cucumber (Cucumis sativus L.) under the impact of soil-borne pathogens in Jordan. J. Food, Agric. Environ. 10 (2): 343-349.
  9. Allaire S, Caron J, Menard C and Dorais M, 2004. Growing media varying in particle size and shape forgreenhouse tomato. Acta Horticulture. 644, pp.307-311.
  10. Alomran AM, Louki II, Aly AA and Nadeem ME, 2013. Impact of deficit irrigation on soil salinity and cucumber yield under greenhouse condition in an arid environment. Journal of Agricultural Science and Technology, 15: 1247-1259.
  11. Amer KH, Sally A and Jerry LH, 2009. Effect of deficit irrigation and fertilization on cucumber, Journal of Agrobiology, 101:1556–1564.
  12. Assadian F, Niazi A and Ramezani M, 2020. Response Surface Modeling and Optimization of Effective Parameters for Zn(II) Removal from Aqueous Solution Using Gracilaria Corticata. Journal of Chemical Health Risks.10(31):213-224.
  13. Asseng A, Ritchia JT and Smuchker AJM, 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant Soil. 201: 265-273.
  14. Barzegar Hafshjani Z, Mobli M, Khoshgoftar manesh AH and Abedi Kupaie J. 2015. The Effect of adding pamis and bentonite to sawdust on growth traits of greenhouse capsicum. Journal of Science and Technology of Greenhouse Culture, 6 (21):77–84.
  15. Cakir R., Cebib UK., Altintasc S. and Ozdemirba A. Irrigation scheduling and water use efficiency of cucumber grown as aspring-summer cycle crop in solar greenhouse. Agricultural Water Management, 180: 78–87.
  16. De Vries, FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setala HM and Bardgett RD, 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, pp. 276–280.
  17. Doorenbos J. and Kassam A.H. 1979. Yield response to water. FAO Irrigation and Drainage paper; no 33.
  18. Jahan M and Amiri MB, 2018. Optimizing application rate of nitrogen, phosphorus and cattle manure in wheat production: An approach to determine optimum scenario using response-surface methodology. Journal of soil science and plant nutrition, 18(1): 13-26.
  19. Kim, TYL, Sang H, Ku H., Lee SY, 2019. inhancement of Drought Tolerance in CucumberPlants by Natural Carbon Materials 8: 446-462.
  20. Li Zh and Yingzhong Xi, 2015. Improving desertified soil properties by incorporating and mulching tree branch in Ningxia province- Transactions of the Chinese Society of Agricultural Engineering, 31(10): 174-181.
  21. Mahmoodi-Eshkaftaki M and Rafiee MR, 2020.Optimization of irrigation management: A multi-objective approach based on crop yield, growth, evapotranspiration, water use efficiency and soil salinity,Journal of Cleaner Production, 252:221-232.
  22. Osundare OT, Badmus AA and Olatubosun OA, 2019. Effects of organic weed control methods on weed density, phenotypic traits and yield attribute of cucumber (Cucumis Sativus). Journal of Biology, Agriculture and Healthcare, 9(10):105-110.
  23. Raphael Y, Schwarz D, Krumbein A and Colla G. 2010. Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127:172–179.
  24. Rezaverdinezhad V, Shabanian M, Besharat S and Hasani A. 2017. Determination of crop water requirement, crop coefficient and water use efficiency of greenhouse-grown cucumber and tomato (Case study: Urmia region). Journal of Science & Technolgy Greenhouse Culture, 8(3):27-40.
  25. Soltani M and Soltani J, 2016. Determination of Optimal Combination of Applied Water and Nitrogen for Potato Yield Using Response Surface Methodology (RSM). Biosc.Biotech.Res.Comm. 9(1): 46-54
  26. Van Genuchten M. Th. 1987. A numerical model for water and solute movement in and below the root zone. Research Report, U. S. Salinity Lab. Riverside CA.
  27. Wang Z, Liu Z, Zhang Z and Liu X, 2009. Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20cm standard pan evaporation in Northeast China. Scientia Horticulture, 123 (1): 51–57.