جریان انرژی و پتانسیل گرمایش جهانی در روش کشت نشایی و خشکه‌کاری برنج در سامانه‌های مختلف آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، دانشکده آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

2 دانشیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

3 استاد پژوهش بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج، گرگان، ایران.

4 استادیار پژوهش گروه تحقیقات اقتصادی و اجتماعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش، گرگان، ایران

5 استادیار بخش زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

کارآیی استفاده از انرژی یکی از مهمترین عوامل برای کشاورزی پایدار است. در این پژوهش، در شهرستان گرگان استان گلستان، میزان ورودی و خروجی انرژی و پتانسیل گرمایش جهانی [1](GWP) در روش­های تولیدی کشت نشایی و کشت مستقیم برنج در سامانه­ های آبیاری بارانی، غرقابی و قطره­ای بررسی شد. با توجه به نتایج، میانگین انرژی ورودی و خروجی برای سامانه ­های مختلف آبیاری در تیمار نشا گلخراب بیشتر از تیمارهای دیگر بود و بیشترین میزان انرژی ورودی و خروجی مربوط به سامانه آبیاری قطره­ای به­ترتیب برابر36366 و 249971 مگاژول در هکتار بود. بیشترین سهم انرژی مصرفی در سامانه­های مختلف آبیاری و کشت متعلق به نهاده آب آبیاری و کودهای شیمیایی بود. همچنین، نتایج نشان داد که شاخص کارایی انرژی برای تیمارهای مختلف بین7/35-5/05 کیلوگرم برمگاژول بود. کارایی انرژی برای سامانه­های آبیاری تحت­فشار در روش نشا غیرگلخراب و برای سامانه­های آبیاری غرقابی در روش نشا گلخراب بیشتر بود. همچنین، بهره­وری انرژی تیمار­های مختلف بین 0/24-0/1 کیلوگرم بر مگاژول بود. با توجه به نتایج مقایسه میانگین، بهره­وری انرژی تیمارهای نشا گلخراب و نشا غیرگلخراب با هم اختلاف معنی­داری نداشته و بیشتر از تیمارهای خشکه­بذری بود. مقادیر انرژی ویژه و خالص انرژی برای تیمارهای مختلف به­ترتیب بین 10/2-4/29 مگاژول بر کیلوگرم و 213825-112785 مگاژول بر هکتار بود. تیمار نشا گلخراب برای تمام سامانه ­های آبیاری بیشترین پتانسیل گرمایش جهانی را داشت. در کشت برنج، بیشترین سهم در پتانسیل گرمایش جهانی مربوط به استفاده از کود نیتروژن، سوخت و ادوات و ماشین­ آلات بود. نتایج مقایسه میانگین پتانسیل گرمایش جهانی در واحد سطح، وزن، انرژی ورودی و انرژی خروجی نشان داد که سامانه­ های آبیاری تحت­فشار با شیوه کشت نشا غیرگلخراب (به دلیل مصرف نهاده کمتر و عملکرد مشابه با کشت نشا گلخراب) می­توانند روش مناسبی برای کشت برنج و کاهش مصرف انرژی و پتانسیل گرمایش جهانی آن باشند.
 
[1] - Global warming potential

کلیدواژه‌ها


عنوان مقاله [English]

Energy Flow and Global Warming Potential in Direct Seeded and Transplantation of Rice under Different Irrigation Systems

نویسندگان [English]

  • Seyede Tayyebeh Hosseini 1
  • Hossein Sharifan 2
  • َAlireza Kiani 3
  • Noormohammad Abyar 4
  • mohammad taghi Feyzbakhsh 5
1 PhD Student of Irrigation and Drainage, Department of Water and Soil,Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Professor, Department of water Engineering, faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Professor of agricultural engineering department, Golestan Agricultural and Natural Resources Research and education Center, AREEO, Gorgan, Iran.
4 Assistant Professor at Socio-Economic Research Group of Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran.
5 Assistant Professor, Department of Agronomy and Plant Breeding, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
چکیده [English]

Energy efficiency is one of the most important factors for sustainable agriculture. This study explored the energy consumption and global warming potential for puddled transplanted (PTR), un-puddled transplanted, and direct-seeded rice (Oryza sativa L.) (DSR) production systems under sprinkler, flood, and drip irrigation systems in Gorgan City fields, Golestan Province, Iran. According to the results, the average energy input and output for different irrigation systems in puddled transplanted treatment was higher than the other treatments, while the highest input and output energy was related to drip irrigation system (36366 and 249971 MJ.h-1). The highest energy consumption in different irrigation and cultivation systems was related to water and nitrogen fertilizer. The results also showed that energy use efficiency for different systems ranged from 5.05 to 7.35 kg.MJ-1. Energy use efficiency for pressurized irrigation systems was higher in puddled transplanted treatment and for flood irrigation systems was higher in un-puddled transplanted treatment. Also, the energy productivities of different treatments were between 0.1 to 0.24 kg.MJ-1, while the mean energy efficiencies of PTR and un-puddled transplanted treatments did not differ significantly and were more than DSR treatment. The specific energy and net energy for different treatments ranged from 4.29 to 10.2 MJkg-1 and 112784 to 213825 MJ.ha-1, respectively. The puddled transplanted treatment had the highest GWP for all irrigation systems. The largest share of GWP in rice cultivation was related to the use of nitrogen fertilizers, fuels, and machinery. The results of mean comparison of GWP per unit area, weight, input energy, and output energy showed that modern pressurized irrigation systems with un-puddled transplanted cultivation method (due to less input and a yield similar to PTR) can be a suitable method for rice cultivation to reduce energy consumption and global warming potential.

کلیدواژه‌ها [English]

  • Energy productivity
  • Input-output energy
  • puddled transplanted rice
  1. الماسی، م. 1380. مدیریت انرژی در کشاورزی، درسنامه دانشگاه شهید چمران اهواز.
  2. پیمان، م.، ر.، رومی، و م.، علی زاده. تعیین انرژی مصرفی در دو روش سنتی و مکانیزه برای تولید برنج (بررسی موردی در استان گیلان). تحقیقات مهندسی کشاورزی، 6(22): 67-80.
  3. دستان، س.، ا.، سلطانی، ق.، نورمحمدی، ح.، مدنی، و ر.، یدی. 1395. تخمین ردپای کربن و پتانسیل گرمایش جهانی در نظام­های تولید برنج. فصلنامه علوم محیطی، 14(1): 28-19.
  4. رجبی، م. ح.، ا.، سلطانی، ا.، زینلی، و ا.، سلطانی. ارزیابی مصرف انرژی در تولید گندم در گرگان. مجله پژوهش­های تولیدات گیاهی، 19(3): 172-143.
  5. رضوی، س. ج.، و ا .ف.، میرلوحی. مطالعه شرایط کنونی تولید برنج در استان اصفهان. گزارش نهایی طرح تحقیقاتی، دانشگاه صنعتی اصفهان، 57 صفحه.
  6. رمضانی امیری، ه.، و م.، زیبایی. بررسی ارتباط میان انرژی نهاده­های مصرفی و عملکرد محصولات گوجه، خیار، خربزه تحت شرایط کشت زیر پلاستیک در شهرستان فیروزآباد فارس. نشریه اقتصاد و توسعه کشاورزی، 25(1): 58-65.
  7. سجادیان، م.، ع.، علیپور جهانگیری، ج.، کامبوزیا، ز. م.، هری، و بهشتی م.، مارنانی. 1392. مقایسه کارآیی انرژی کشت بوم­های برنج (Oryza sativa) در دو استان گیلان و کهگیلویه و بویر احمد. مجله کشاورزی بوم شناختی، 3(1): 26-17.
  8. کولائیان، ع.، و غلامی م.، سفیدکوهی. 1391. معرفی بهترین روش تعیین بارندگی مؤثر کشت برنج در شهرستان قائمشهر. سومین همایش ملی مدیریت جامع منابع آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
  9. Acaroglu, M. 1998. Energy from Biomass, and Applications. University of Selcuk, Graduate School of Natural and Applied Sciences. Textbook.
  10. Basavalingaiah, K., Y. M., Ramesha, V., Paramesh, G. A., Rajanna, Sh., Lal Jat, S., Misra, Gaddi, H. C., Girisha, G. S., Yogesh, S., Raveesha, T. K., Roopa, K. S., Shashidhar, B., Kumar, D. O., El-Ansary, and H. O., Elansary. 2020. Energy Budgeting, Data Envelopment Analysis and Greenhouse Gas Emission from Rice Production System: A Case Study from Puddled Transplanted Rice and Direct-Seeded Rice System of Karnataka, India. Sustainability, 12, 6439, p.p 19.
  11. Bhushan, L., J.K., Ladha, R.K., Gupta, S., Singh, A., Tirol-Padre, Y.S., Saharawat, M., Gathala, and H., Pathak. 2007. Saving of water and labor in a rice-wheat system with notillage and direct seeding technologies. Agronomy Journal 99: 1288-96.
  12. Bockari-Gevao, S. M., W. I., Ismail, A., Yahya, and C. C., Wan. 2005. Energy consumption in lowland rice-based cropping system of Malaysia. Songklanakarin J. Sci. Technol. 27(4): 819-826.
  13. Canakci, M., and I., Akinci. 2006. Energy use pattern analyses of greenhouse vegetable production. Energy Conversion and Management, 31: 1243–1256.
  14. Chaudhary, V., B., Gangwar, and D., Pandey. 2006. Auditing of energy use and output of different cropping systems in India. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 05001 Vol. 8.
  15. Chaudhary, V.P., K.K., Singh, G., Pratibha, R., Bhattacharyya, M., Shamim, I., Srinivas, and A., Patel, 2017. Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation. Energy, 130, 307–317. [CrossRef]
  16. Chauhan, B. S., and J., Opeña. 2012. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crop Res, 137:56–69. Doi: 10.1016/j. fcr.2012.08.016
  17. Dalgaard, T., N., Halberg, and J., Fenger. 2000. Fossil energy use and emissions of greenhouse gases- three scenarios for conversion to 100% organic farming in Denmark. In: van Lerland, E., A.Q. Lansink. and E. Schmieman. (Eds.), Proceedings of the International Conference on Sustainable Energy: New Challenges for Agriculture and Implications for Land Use, Wageningen, the Netherlands. Chapter, 7.2.1, 11 p.
  18. Deike, S., B., Pallutt, and O., Christen. 2008. Investigation on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy, 28, 461-470.
  19. Erdal, G., Esengun, K., Erdal, H., and O., Gunduz. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32: 35–41.
  20. Eskandari cherati, F. A., H., Bahrami, and A., Asakereh. 2011. Energy survey of mechanized and traditional rice production system in Mazandaran province of Iran. African journal of Agriculture Reserch, 11: 2565-2570.
  21. Gundogmus, E. 2006. Energy use on organic farming: A comparative analysis on organic versus conventional apricot production on small holding in Turkey. Energy Conversion and Management, 47, 335-351.
  22. Hulsbergen, K. J., B., Feil, S., Biermann, G. W., Rathke, W. D., Kalk, and W., Diepenbrock. 2001. A method of energy balancing in crop production and its application in a long- term fertilizer trial. Agriculture, Ecosystems and Environment, 86(3): 303-321.
  23. Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for policy makers. The Physical Science Basis, 7: 165-177.
  24. Intergovermental panel on climate (IPCC).1996. Revised Guidelines for National Greenhouse Gas Inventories.Cambridge University Press, UK.
  25. Iqbal, T. 2007. Energy input and output for production of Boro Rice in Bangladesh. EJEAFChe, 6 (5): 2144-2149.
  26. Islam, A. K. M. S., M. A., Rahman, R. I., Saker, M., Ahiduzzaman, and M. A., Baqui. 2001. Energy audit for rice production under power tillage and bullock farming systems in Bangladesh. Online J. of Biol. Sci., 1: 873-876.
  27. Jat, M.L., M.K., Gathala, J.K., Ladha, Y.S., Saharawat, A.S., Jat, V., Kumar, A.S., Sharma, and R.K., Gupta. 2009. Evaluation of precision land leveling and double zero-till systems in the rice-wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Tillage Research 105(1): 112-121.
  28. Kaltsas, A. M., A. P., Mamolos, C. A., Tsatsarelisb, G. D., Nanosc, and K. L., Kalburtji. 2007. Energy budget in organic and conventional olive groves. Agriculture Ecosystems & Environment, 122 (2): 243-251.
  29. Kitani, O. 1998. CIGR, Handbook of agricultural engineering volume 5, Energy and Biomass Engineering. ASAE publication. 5, p.330.
  30. Mahajan, G., T.S., Baharaj, and J., Timsina. 2009. Yield and water productivity of rice as affected by time of transplanting in Punjab India. Agric Water Manage, 96: 525-32.
  31. Mahajan, G., B.S., Chauhan, J., Timsina, P.P., Singh, and K., Singh. 2012. Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Research, 134: 59–70.
  32. Mani, I., and S. K., Patel. 2012. Energy Consumption Pattern in Production of Paddy Crop in Haryana State in India. Agricultural Mechanization in Asia, Africa & Latin America, 43(2): 39-42.
  33. Mansoori, H., P., Rezvani Moghadam, and R. H., Moradi. 2012. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Energy, 6: 341-350.
  34. Mobtaker, H. G., A., Akram, A., Keyhani, and A., Mohammadi, 2011. Energy consumption in alfalfa production: A comparison between two irrigation systems in Iran. African Journal of Plant Science, 5(1): 47-51.
  35. Singh, J. 2002. On Farm Energy Use Pattern in Different Cropping Systems in Haryana, India. MSc. thesis, International Institute of Management University of Flensburg, Germany.
  36. National Greenhouse Accounts Factors. 2011. climatechange.gov.au, Commonwealth of Australia.
  37. Ozkan, B., H., Akcaoz, and C., Fert. 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy, 29(1): 39-51.
  38. Pathak, H., and R., Wassmann. 2007. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agric. Syst, 94: 807-825.
  39. Pathak, H. 2015. Greenhouse Gas Emission fromIndian Agriculture: Trends, Drivers and Mitigation Strategies. Proc. Indian Natl. Sci. Acad., 81, 1133–1149. [CrossRef]
  40. Pishgar-Komleh, S. H., P., Sefeedpari, and S., Rafiee. 2011. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy, 36: 5824-5831.
  41. Rathke, G. W., B. J., Wienhold, W. W., Wilhelm, and W., Diepenbrock. 2007. Tillage and rotation effect on corn soybean energy balances in eastern Nebraska. Soil and Tillage Research, 6: 245-261.
  42. Sharma, P. K., L., Bhushan, J. K., Ladha, R. K., Naresh, R. K., Gupta, B. V., Balasubramanian, and B. A. M., Bouman. 2002. Crop-water relations in rice-wheat cropping under different tillage systems and watermanagement practices in a marginally sodic, medium-textured soil. Water-wise rice production. International Rice Research Institute, Los Baños, 8: 223–235.
  43. Singh, A. K., B. U., Choudhury, and B. A. M., Bouman. 2002. Effects of rice establishment methods on crop performance, water use, and mineral nitrogen. Water-wise rice production. International Rice Research Institute, Los Baños, 8: 237–246.
  44. Singh, S., S., Singh, J. P., Mittal C. J. S., Pannu, and B. S., Bhangoo. 1994. Energy inputs and crop yield relationships for rice in Punjab. Energy, 19(10):1061-1065.
  45. Smith, P., D., Martino, Z., Cai, D., Gwary, H., Janzen, P., Kumar, B., Mccarl, S., Ogle, F., O’Mar, C., Rice, B., Scholes, O., Sirotenko, M., Howden, T., McAllister, G., Pan, V., Romanenkov, U., Schneider, and S., Towprayoon. 2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment. 118, 6-28.
  46. Soltani, A., M. H., Rajabi, E., Zeinali, and E., Soltani. 2013. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50: 54-61.
  47. Soni, P., C., Taewichit, and V. M., Salokhe. 2013. Energy consumption and CO 2 emissions in rainfed agricultural production systems of Northeast Thailand. Agric. Syst., 116, 25–36. [CrossRef]
  48. Wakil, M., A., Ibrahim, A. S., Shehu Umar, and G., Bukar. 2018. Analysis of energy input-output of irrigated rice production in Jere Bowl Borno State, Nigeria. African Journal of Agricultural Research, 1661-1666.
  49. Yaldiz, O., H. H., Ozturk, Y., Zeren, and A., Bascetincelik, 1993. Energy usage in production of field crops in Turkey. In: Vth international congress on mechanization and energy in agriculture. Izmir-Turkey, p. 527–36.
  50. Yuan, S. and S., Peng. 2017. Input-output energy analysis of rice production in different crop management practices in central China. Elsevier, Energy, 141: 1124-1132.