بررسی اثرات استفاده از آب ‌شور مغناطیسی بر خصوصیات شیمیایی و نفوذ‌پذیری خاک و رشد و عملکرد درختان پسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، پژوهشکده پسته، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان، ایران.

2 کارشناس ‌ارشد باغبانی، پژوهشکده پسته، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان، ایران.

چکیده

برداشت بی‌رویه از منابع آب کشاورزی در استان کرمان، باعث شده تا سطح آب زیرزمینی در این مناطق سالانه به‌طور متوسط حدود یک متر افت داشته باشد. افت سطح آب‌های زیرزمینی علاوه بر کاهش منابع آبی، شور‌شدن تدریجی آن‌ها را نیز سبب شده است. بنابراین، باید با انجام پژوهش‌های کاربردی علاوه بر افزایش بهره‌وری مصرف آب، به‌دنبال راهکارهای جدیدی در راستای استفاده از آب‌های شور بود.براین اساس، پژوهشی در قالب طرح بلوک‌های کامل تصادفی اجرا شد که شامل دو نوع آب آبیاری (آب‌شور معمولی و مغناطیسی با شوری dS/m 7/18) و دو میزان آب آبیاری (85‌ و 100 درصد نیاز آبی درخت پسته) بود. تیمارها با یک تیمار مخلوط آب‌شور و شیرین به عنوان شاهد (با شوری dS/m 5/6) مقایسه شد. دور آبیاری هر 30 روز یک‌بار (منطبق با دور آبیاری قطعه آزمایشی قبل از انجام پژوهش)، در نظر گرفته شد. نتایج نشان داد که بین میانگین صفات رویشی و کمی و کیفی محصول در تیمارهای مختلف آب‌شور در هر دو حالت آب مغناطیسی و معمولی، در اغلب موارد تفاوت معنی‌داری (P<0.05) وجود نداشت. در موارد خاصی هم که تفاوت معنی‌دار شد، روند مشخصی مشاهده نشد. از سویی، تیمار مخلوط آب‌شور و شیرین (شاهد)، نسبت به تیمارهای آب‌شور معمولی و مغناطیسی، در تمام موارد وضعیت بهتری داشت و این تفاوت از نظر آماری معنی‌دار (P<0.05) بود. درمجموع، استفاده از آب‌شور در هردو حالت معمولی و مغناطیسی، نسبت به تیمار شاهد، باعث کاهشی در حدود 20 سانتی‌متر مربع در سطح برگ، کاهش 10 درصدی تشکیل جوانه زایشی، کاهش رشد طولی و قطری شاخه‌ها به‌ترتیب به‌میزان پنج سانتی‌متر و 5/1 میلی‌متر، کاهش 5/0 کیلوگرم پسته خشک در هر درخت، افزایش هفت درصد پوکی، کاهش 10 درصدی خندانی و افزایش 5/1 واحدی در انس پسته شد. ضمن این‌که استفاده از آب ‌شور باعث کاهش 120 گرمی میزان محصول خشک تولیدی به ازای هر مترمکعب آب مصرفی (بهره‌وری مصرف آب) شد. مغناطیسی‌کردن آب هیچ‌گونه تأثیری بر بهبود وضعیت شیمیایی خاک ازنظر شوری و نسبت جذبی سدیم نداشت. در تمام تیمارهای آب‌شور در هر دو حالت آب معمولی و مغناطیسی، سرعت نفوذ نهایی آب در خاک در انتهای سال دوم آزمایش، تا 6/31 درصد کاهش یافت، درحالی‌که در تیمار شاهد تغییری نکرد. کاهش نفوذپذیری در تیمارهای آب‌شور با میزان آب مصرفی 100 درصد نیاز آبی نسبت به تیمارهای با میزان آب 85 درصد، شدیدتر بود. به نظر می‌رسد با افزایش میزان آب آبیاری، سدیم بیشتری وارد خاک شده و نهایتاً سرعت نفوذ بیشتر کاهش‌یافته است. این نتایج نشان داد که دستگاه‌های مغناطیسی‌کننده آب مورد استفاده در این پژوهش هیچ‌گونه تأثیر مثبتی در کاهش اثرات منفی آب‌شور بر درختان پسته و خاک نداشتند. چنین به نظر می رسد که اثر آب مغناطیسی بر گیاهان چندساله، نیاز به بررسی‌های طولانی‌تر (5 تا 10 ساله) داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Study on Effects of Magnetic Saline Water on Soil Chemical properties and permeability, Growth and Yield of Pistachio Trees

نویسندگان [English]

  • Nasser Sedaghati 1
  • Seyed Javad Hosseinifard 1
  • Mohammad Reza Nikouei Dastjerdi 2
1 Assistant Prof., Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran.
2 Master of Horticulture, Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran.
چکیده [English]

 
Unsustainable withdrawal of agricultural water resources in the province of Kerman has caused an annual average of one-meter drop in ground watertable. Drop in groundwater levels, in addition to decreasing water resources, has caused their gradual salinization. Thus, it is necessary to carry out research to find the ways for increasing water use productivity (WUP) and new guidelines to use saline water. This research was conducted in randomized complete block design, consisting of two types of irrigation water (normal and magnetic saline water with a salinity of about 19 dS/m) and two amounts of irrigation water (85% and 100% of the water requirements of pistachio trees). Treatments were compared with a mixture of non-saline and saline water treatment as a control (with a salinity of 6.5 dS/m). Irrigation was done every 30 days, based on the irrigation frequency of the experimental plots before the project. The results showed that, in most cases, there was no significant difference (p<0.05) in the average growth characteristics and qualitative and quantitative characteristics of the yield in different treatments of saline water (both magnetic and non-magnetic water). In certain cases where the difference was significant, there was no clear trend. In all cases, treatment of mixed non-saline and saline water compared to non-magnetic and magnetic saline water treatments was significantly (p<0.05) better. Overall, in comparison with the control, the use of saline water (in both normal and magnetic treatment), caused decrease in leaf area about 20 cm2, 10% reduction in reproductive bud formation, reduced length and diameter of branches 5 cm and 1.5 cm, respectively, decreased dry weight per tree by 0.5 kg, increased blanking by7%, decreased splitting by10%, and increased 1.5 units in number of nut in ounce. Also, the use of saline water reduced the yield by 120 g dry weight per cubic meter of applied water (WUP). There wasn't significant difference between treatments for soil nutrient concentrations. Magnetic water had no effect on the improvement of soil salinity and sodium adsorption ratio. In all treatments in both non-magnetic and magnetic water, the final infiltration rate of water in the soil at the end of the second year, was reduced up to 31.6%, while it did not change in the control treatment. Permeability reduction in treatment with 100 percent water requirement was more compared to treatments with 85% water requirement. Seemingly, increase in the amount of irrigation water led to more sodium entry into the soil and, eventuall,y infiltration rate was reduced. Thus, the results showed no positive effect in the magnetic water on reducing the negative effects of salt water on the pistachio trees and soil. It seems that the effect of magnetic water on perennial plants requires longer studies (5-10 years old).
 

کلیدواژه‌ها [English]

  • Final Infiltration rate
  • Salinity
  • Water use efficiency
  1. خوش‌روش، م و کیانی، ع. 1394. اثر آب شور مغناطیسی‌شده بر نفوذپذیری و هدایت الکتریکی بافت‌های مختلف خاک. نشریه آبیاری و زهکشی ایران. شماره 4، جلد 9، صفحات 654-646.
  2. رنجبر، غ. روستا، م. ج و چراغی، س. ع. م. 1391. بررسی اثر آب مغناطیسی بر شاخص‌های رشد گندم در شرایط شور. مجله پژوهش آب در کشاورزی. جلد 26، شماره 3، صفحات 274-263.
  3. زنگنه یوسف‌آبادی، ا. بهزاد، م و برومند‌نسب، س. 1391. تأثیر استفاده از آب مغناطیسی بر میزان آبشویی کاتیون‌ها و آنیون‌های خاک شور در شرایط آزمایشگاهی. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، جلد 26، شماره 3، صفحات 689-680.
  4. عالمی، محمدحسن. 1371. طراحی دستگاه‌های آبیاری. نشر دانش و فن. 384 صفحه.
  5. فرشی، ع. ‌ا. شریعتی، م. ر. جارالهی، ر. قائمی، م. ر. شهابی فر، م و تولایی، م. م. 1376. برآورد آب موردنیاز گیاهان عمده زراعی و باغی، جلد دوم، گیاهان باغی- موسسه پژوهشهای خاک و آب کشور. نشر آموزش کشاورزی، 630 صفحه.
  6. فیضی، ح. رضوانی، م. پ. صحابی، ح و امیر مرادی، ش. 1391. تحریک جوانه‌زنی بذر و ریشه گیاه‌چه گوجه‌فرنگی با استفاده از میدان مغناطیسی و خیساندن بذر. نشریه علوم باغبانی (علوم و صنایع کشاورزی)، دانشگاه فردوسی مشهد. جلد 26، شماره 3، صفحات 349-343.
  7. فیضی، ح. رضوانی، م. پ. کوچکی، ع. شاه‌طهماسبی، ن و فتوت، ا. 1390. تأثیر شدت و زمان‌های مختلف میدان مغناطیسی بر رفتار جوانه‌زنی و رشد گیاهچه گندم (.Triticum aestivum L).‎ نشریه بوم‌شناسی کشاورزی، دانشگاه فردوسی مشهد. جلد 3، شماره 4، صفحات 490-482.
  8. Algarra, R. M., Zamora, L. L., Fos, G. A., and López, P. A. 2008. Magnetized Water: Science or Fraud? Journal of Chemical Education, 85(10), 1416.
  9. Alimi, F., Tlili, M. M., Amor, M. B., Maurin, G., and Gabrielli, C. 2009. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material. Chemical Engineering and Processing: Process Intensification, 48(8):1327-1332.
  10. Bogatin, J., Bondarenko, N. P., Gak, E. Z., Rokhinson, E. E., and Ananyev, I. P. 1999. Magnetic treatment of irrigation water: Experimental results and application conditions. Environmental science and Technology, 33(8):1280-1285.
  11. Danilov, V., Bas¸, T., Eltez, M. and Rizakulyeva, A. 1994. Artificial magnetic field effects on yield and quality of tomatoes. Acta Hortic. 366:279–285.
  12. Esitken, A. and Turan, M. 2004. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. camarosa). Acta Agric. Scand, Sect. B, Soil Plant Sci. 54:135–139
  13. Fathi, A., Mohamed, T., Claude, G., Maurin, G., and Mohamed, B. A. 2006. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research, 40(10):1941-1950.
  14. Gabrielli, C., Jaouhari, R., Maurin, G., and Keddam, M. 2001. Magnetic water treatment for scale prevention. Water Research, 35(13):3249-3259.
  15. Hozayn, M., and Qados, A. A. 2010a. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agriculture and Biology Journal of North America, 1(4):671-676.
  16. Hozayn, M., and Qados, A. A. 2010b. Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agriculture and Biology Journal of North America, 1(4): 677-682.
  17. Knez, S., and Pohar, C. 2005. The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. Journal of Colloid and Interface Science, 281(2):377-388.
  18. Kobe, S., Dražić, G., McGuiness, P. J., and Stražišar, J. 2001. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device. Journal of Magnetism and Magnetic Materials, 236(1):71-76.
  19. Lai, J., & Ren, L. 2007. Assessing the size dependency of measured hydraulic conductivity using double-ring infiltrometers and numerical simulation. Soil Science Society of America Journal, 71(6), 1667-1675.
  20. Qados, A. A., and Hozayn, M. 2010. Magnetic water technology, a novel tool to increase growth, yield and chemical constituents of lentil (Lens esculenta) under greenhouse condition. American-Eurasian Journal of Agricultural and Environmental Science, 7(4:457-462.
  21. Soltani, F., Kashi, A., and Arghavani, M. 2006. Effect of Magnetic Field on Ocimum basilicum Seed Germination and Seedling Growth. In International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation, 723:279-282.