بهینه‌سازی مصرف آب و کود در کودآبیاری ذرت دانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه آب دانشگاه ایلام

2 عضو هیئت علمی (استاد) مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمانتحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

بهینه‌سازی مصرف آب و کود،علاوه بر کاهش هزینه‌های تولید و حفظ منابع، باعث کاهش آلودگی‌های زیست‌محیطی ناشی از مصرف بی‌رویه این منابع می شود. در این مطالعه به منظور بهینه‌سازی مصرف آب و کود اوره ذرت دانه­ای رقم دابل کراس 370، آزمایشی به صورت فاکتوریل با طرح پایه بلوک­های کامل تصادفی در چهار تکرار طی سال­های زراعی 87- 1386 و 89-1388روی جویچه­های انتها باز با طول 165 متر در مزرعه 400 هکتاری موسسه تحقیقات اصلاح و تهیه نهال و بذرکرج انجام شد. فاکتور اول شامل چهار سطح آب (W): 60%، 80%، 100%، و120% آبیاری کامل و فاکتور دوم شامل چهار سطح کود (N): شاهد بدون کود، 60%، 80% و 100% توصیه کودی به روش کود­آبیاری بود. کود اوره در چهار تقسیط مساوی (قبل از کاشت، مرحله هفت برگی، مرحله ساقه رفتن و مرحله سنبله­دهی) به خاک داده شد. برای انتخاب بهترین ترکیب آب و کود، ابتدا توابع تولید عملکرد، هزینه و درآمد خالص بر حسب آب و کود مصرفی در شرایط محدودیت آب و محدودیت زمین با استفاده از آزمون رگرسیون چندگانه استخراج شد. سپس با استفاده از تابع هدف حداکثر درآمد خالص سطوح بهینه آب و کود محاسبه شد. نتایج آزمون رگرسیون چندگانه در سطح پنج درصد نشان داد که بهترین رابطه بین عملکرد ذرت دانه‌ای و مقدار مصرف هر یک از نهاده‌های آب و کود تابع درجه دوم می‌باشد (مقدار R2=0.83 وME=15.53%). سطح بهینه کود مصرفی به عمق آب آبیاری وابسته است به طوری که با افزایش مقدار آب آبیاری، سطح بهینه کود مصرفی افزایش می‌یابد. نتایج بهینه‌سازی توابع تولید نشان داد که در شرایط محدودیت زمین، سطوح بهینه آب و کود اوره مصرفی برای دستیابی به حداکثر سود خالص به ترتیب 940 میلیمتر و 375 کیلوگرم در هکتار می‌باشد. لیکن در شرایط محدودیت آب، مصرف 774 میلیمتر (77 درصد آب مصرفی) و 357 کیلوگرم کود اوره در هکتار(90 درصد نیاز کودی) سطوح بهینه مصرف آب و کود می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Water and Nitrogen Application in Corn Fertigation

نویسندگان [English]

  • h a 1
  • f a 2
چکیده [English]

 
Optimization of water and nitrogen applicationdecreases production costs, conserves resources, and reduces environmental pollution which occurs as a result of excessive use of these resources. The objective of this study was to optimize applied water and urea in corn fertigation. A field experiment was carried out in furrows, having 165m length and 0.006 m/m slope, in Karaj. The corn hybrid 370 double-cross was planted on June 2008 and 2010. The experiments were carried out according to a factorial arrangementbased on randomized complete block design with 4 replicates. Four levels (0, 60%, 80%, and 100%) of the recommended fertilizer value and four levels (60%, 80%, 100%, and 120%) of irrigation water requirement were applied. Fertilizer treatments were accomplished atfour critical stages of the growth (before cultivation, seven-leaf stage, shooting stage, and flowering stage). In this study, an analysis of crop yield production, cost and revenue functions, and profit maximization was conducted to determine the optimal water and nitrogen use. The results of multiple regression at 5% level showed that the relationship between the grain yield and the amount of each of the inputs of water and nitrogen was a quadratic function (R2=0.83 and ME=15.53%). The optimal level of urea consumption was dependent on applied water. By increasing the amount of irrigation water, the optimum level of fertilizer consumption is increased. When land is limiting, use of full irrigation (940 mm) and 375 kgurea/ha leads to maximum income. When water is limiting, the optimum amounts of applied water and urea were774 mm (77% of water requirement) and 357 kg/ha (90% of urea recommendation), respectively. 

کلیدواژه‌ها [English]

  • Production Function
  • Optimal water
  • Revenue function
  1. توکلی، ع و فرداد، ح. 1381. به­گزینی مدیریت آبیاری تکمیلی و بهینه­سازی مصرف کود نیتروژن برای گندم. گزارش طرح پژوهشی اجرا شده در مرکز تحقیقات دیم مراغه. ۱۴ صفحه.
  2. عباسی، ف. چوگان، ر. علیزاده، ح. ع و لیاقت، ع. 1391. بررسی اثر کودآبیاری جویچه‌ای بر کارایی مصرف آب و کود، عملکرد و برخی صفات ذرت دانه‌ای. نشریه تحقیقات آب و خاک ایران. 43 (4): 385-375.
  3. عباسی، ف.؛ لیاقت. ع. م.، گنجه، ا. 1388. ارزیابی یکنواختی کودآبیاری در آبیاری جویچه­ای. مجله خاک و آب، 39 (1): 129-117.
  4. علیزاده، ح. ع؛ عباسی، ف و لیاقت، ع .1389. ارزیابی یک‌نواختی توزیع و تلفات نیترات در کودآبیاری جویچه‌ای. نشریه علوم آب و خاک: 14(51): 49-39.
  5. ملکوتی، م. ج. و ریاضی همدانی. س. ع. 1370. کودها و حاصلخیزی خاک (ترجمه). انتشارات دانشگاه تهران. 800 صفحه.

 

  1. Boldt, A. L., Watts, D. G., Eisenhauer, D. E., and Schepers, J. S. 1994. Simulation of water applied nitrogen distribution under surge irrigation. Trans. ASAE. 37(4):1157-1165.
  2. Cakir, R., 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89:1–16.
  3. Englich, M. 1990. Deficit irrigation. I: Analytical framework. J. Irrig. Drain. Eng., ASCE. 116(IR3): 399-412.
  4. Farre, I.,Faci, J. M., 2009. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agric Water Manage. 96: 383–394.
  5. Hou, Z., Li, P., Li, B., Gong, J., Wang, Y. 2007. Effects of fertigation scheme on N uptake and N use. J. Plant Soil. 290:115–126.
  6. Liang, B.C., and Mackenzie, A.F. 1994. Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Can. J. Soil Sci. 74:235–240.
  7. Liua, W.Z., Zhang, X. 2007. Optimizing water and fertilizer input using an elasticity index: a case study with maize in the loess plateau of china. Field Crops Res. 100 (2–3): 302–310.
  8. Oikeh, S. O., Kling, J. G., Okoruwa, A. E. 1988. Nitrogen fertilizer management effects on maize grain quality in the west African Moist Savanna. J. Crop Sci. 38:1056-1061
  9. Pandey, R.K., Maranwille, J.W., Admou, A., 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agric. Water Manage. 46 (1): 1–13.
  10. Pang, X.P., Letey, J., 1998. Development and evaluation of ENVIRO-GRO, an integrated water, salinity, and nitrogen model. Soil Sci. Soc. Am. J. 62 (5): 1418–1427.
  11. Payero, J.O., Melvin, S. R., Irmak, S., Tarkalson, D., 2006. Yield response of corn to deficit irrigation in a semiarid climate. Agric. Water Manage. 84, 101–112.
  12. Playan, E. and J. M, Faci, 1997. Border irrigation: Field experiment and a simple model. Irrig. Sci., 17(4):163-171.
  13. Tiercelin, J.R., Vidal, A., 2006. Traite´ d’Irrigation, 2nd edition. Lavoisier edition.
  14. Traore, S.B., Carlson, R.E., Pilcher, C.D., Rice, M.E., 2000. Bt and Non-Bt maize growth and development as affected by temperature and drought stress. Agron. J. 92: 1027–1035.
  15. Ulger, A. C.,  Ibrikci, H., Cakir, B., Guzel, N. 1997. Influence of nitrogen rates and row spacing on corn yield, protein content, and other plant parameters. J. Plant Nutr. 20:1697-1709.
  16. Zand-Parsa, Sh., Sepaskhah, A.R., 2001. Optimal applied water and nitrogen for maize. Agric. Water Manage. 52(1): 73–85.
  17. Zhang, H and Oweis, T. 1999. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric. Water Manage. 38: 195-211.